GUJARAT TECHNOLOGICAL UNIVERSITY

ELECTRICAL (09) /POWER ELECTRONICS (24) DC MACHINE AND TRANSFORMER SUBJECT CODE: 2130904 B.E. 3rd Semester

Type of Course: Engineering Science(ELECTRICAL)

Prerequisite: N.A.

Rationale: N.A.

Teaching and Examination Scheme:

Teaching Scheme			Credits	Examination Marks						Total
L	Т	Р	С	Theor	Theory Marks		Practical M		Marks	Marks
				ESE	PA (M)		PA (V)		PA	
				(E)	PA	ALA	ESE	OEP	(I)	
4	0	2	6	70	20	10	20	10	20	150

L- Lectures; T- Tutorial/Teacher Guided Student Activity; P- Practical; C- Credit; ESE End Semester Examination; PA- Progressive Assessment.

Content:

Sr.	Topics	Teaching	Module
No.		Hrs.	Weightage
1.	Module 1. Electromechanical Energy Conversion: Principle, Singly	8	10
	Excited Magnetic System and Doubly Excited Magnetic system.		
	Physical concept of torque production; Electromagnetic torque and		
	Reluctance torque.		
	Concept of General terms pertaining to Rotating Machines:		
	Electrical & Mechanical degree, Pole pitch, Coil, Generated EMF		
	in full pitched coil, Generated EMF in a short pitched coil, EMF		
	polygon,		
	Distribution factor, Pitch factor. MMF produced by Distributed		
	Windings, MMF of a coil, MMF of single phase distributed		
	Winding, MMF waveform of Commutator machines.		
2.	Module 2. D.C. Machines: Working principle, construction and	24	40
	methods of excitation.		
	Armature Winding: Introduction of simplex lap and wave windings.		
	DC generators: EMF equation – methods of excitation – separately		
	and self-excited - shunt, series, compound - armature reaction -		
	effects of armature reaction - demagnetizing & cross magnetizing		
	ampere-turns - compensating windings - inter poles - commutation		
	- methods to improve commutation - voltage build-up - no load		
	characteristics - load characteristics - losses and efficiency - power		
	flow diagram –parallel operation – applications of DC generators.		
	D.C. Motors: Principle of operation – back EMF – classification –		
	torque equation – losses and efficiency – power flow diagram –		

	performance characteristics of shunt, series and compound motors -		
	starting of DC motors – necessity and types of starters – design of		
	starters – speed control – methods of speed control – solid state		
	speed control (block diagram) - testing - Swinburne's test -		
	Hopkinson's test – separation of losses – retardation test – field test		
	of dc motors – application of DC motor.		
3	Module 3. Transformers: Principle, construction and operation of	24	40
	single phase transformers, phasor diagram, equivalent circuit,		
	voltage regulation, losses and efficiency,		
	Testing- Open & short circuit tests, Polarity test, Sumpner's test,		
	Separation of hysteresis and eddy current losses,		
	Autotransformers - Construction, Principle, Applications and		
	Comparison with two winding transformer,		
	Three phase Transformer: Construction, various types of		
	connection and their comparative features, 3-phase transformer		
	connections - Δ - Δ , Y-Y, Δ -Y, Y- Δ , V-V – vector groupings Yy0,		
	Dd0, Yd1, Yd11, Dy1, Dy11, Scott connection – three winding		
	transformer – tertiary winding – per unit impedance.		
	Parallel operation of single phase and three phase transformers.		
	Excitation phenomenon in transformers, Harmonics in single phase		
	and three phase transformers,		
	Tap changing Transformers - No load and on load tap changing of		
	transformers, Cooling methods of transformers.		
	Special Transformers: Potential transformer, Current transformer.		
	Pulse transformer, Audio frequency transformer. Grounding		
	transformer.		

Note: 30%-40% weightage should be given to the Examples and Short/Multiple choice questions.

Reference Books:

- 1. Nagrath I J and Kothari D P, Electric Machines, Tata McGraw Hill
- 2. Ghosh, Electrical Machine, Pearson Education
- 3. P.S. Bhimbra, Electrical Machinery, Khanna Publishers
- 4. Clayton & Hancock, Performance & Design of DC machines, ELBS
- 5. MG Say, Theory, Performance & Design of A.C. Machines, CBS Publishers.
- 6. Irving L. and Kosow, Electric Machinery and Transformers, Prentice-Hall of India
- 7. George Mcphersion ,"An Introduction to Electrical Machines and Transformers", John Wiley & Sons, NY
- 8. Fitzgerald A.E and Kingsley, Electrical Machinery, Tata McGraw Hill
- 9. Langsdorf A S, Theory of A C Machinery, Tata McGraw Hill
- 10. K. Murukesh Kumar, DC machines and Transformers, Vikas Publishing house Pvt Ltd.

Course Outcomes:

After learning the course the students should be able to :

- Understand working principle, performance, control and applications of DC Machines and Transformer.
- Carry out test and conduct performance experiments on DC machine and Transformer.
- Identify, formulate and solve DC machine and Transformer related problems.

List of Practical including Open Ended Problems:

- 1. To obtain Magnetizing Characteristics, Internal & External Characteristic of Self Excited DC Shunt Generator. Also obtain the critical filed resistance of the machine from magnetizing Characteristics.
- 2. To conduct direct load test on a D.C. compound generator with a) Shunt field alone b) Cumulative and differential compounding for short and long shunt connections.
- 3. To obtain Speed-Torque characteristics of DC Series Motor and DC Shunt Motor.
- 4. To determine the efficiency of two similar shunt machines by regenerative method. (Hopkinson's Test.)
- 5. To perform filed test on D.C. series motor.
- 6. To determine the various losses in a D.C. machine and separation of its core losses.
- 7. To perform direct load test on a D.C. shunt motor and plot variation of (a) Input current (b) Speed(c) Torque (d) Efficiency versus output power.
- 8. To separate hysteresis and eddy current losses of a single phase transformer at rated voltage, frequency by conducting no load tests at different frequencies keeping V/f constant.
- 9. To operate two single phase transformers of different KVA ratings in parallel and plot the variation of currents shared by each transformer versus load current.
- 10. To conduct Sumpner test on two identical single phase transformers and determine their efficiency at various loads.
- 11. To make Scott connection of two single phase transformer and to verify the current relation by drawing phasor diagrams for (a) Balanced and (b) Unbalanced resistive loads.
- 12. To conduct open circuit and short circuit test on a three phase three winding transformer and determine the equivalent circuit parameters.
- 13. To conduct Sumpner test on two identical single phase transformers and determine their efficiency at various loads.
- 14. Speed control of DC Shunt Motor using a) Armature control and b) field control methods. Also perform Swinburne's test on DC Shunt Motor.

Major Equipments:

The necessary no. of Kits, breadboard, equipment, accessories and instruments etc... to be provided to conduct the above practical in a group of max. 4 students.

List of Open Source Software/learning website:

Open Source Software:

- LTSpice for circuit simulation,
- KiCAD for CAD application

Web-based tools for design:

- http://www.fairchildsemi.com/support/design-tools/power-supply-webdesigner/
- http://www.ti.com/lsds/ti/analog/webench/overview.page

Circuit Lab:

- https://www.circuitlab.com/editor/

Open source Math Tools:

- http://maxima.sourceforge.net/
- http://www.sagemath.org/
- http://www.scilab.org/
- http://www.gnu.org/software/octave/

Learning website

- <u>http://www.electrical-engineering-portal.com/</u>
- http://nptel.iitm.ac.in/courses.php

Active learning Assignments (AL) : Preparation of power-point slides, which include videos, animations, pictures, graphics for better understanding theory and practical work – The faculty will allocate chapters/ parts of chapters to groups of students so that the entire syllabus to be covered. The power-point slides should be put up on the web-site of the College/ Institute, along with the names of the students of the group, the name of the faculty, Department and College on the first slide. The best three works should submit to GTU.