Alpha College of Engineering & Technology
Subject:Computer Programming & Utilization(2110003)

Draw the block diagram of computer architecture and explain each block.

'What is Algorithm? What is Flowchart? Write down the advantage and disadvantages.

Compare them.

Explain various symbol used in flowchart. Write an algorithm and draw a flowchart for
given program,

' Explain Basic structure of 'C' program.

Explain Different data types available in C.

'Explain operator available in C.

Explain If....else....if ladder with example and draw flowchart.

Explain nested if with example and draw flowchart.

'Explain Switch-case statement with example.

Explain loops available in C with example.

'State difference between Entry Control loop and Exit Control loop.

'Explain Break, Continue, Goto with Example.

What is an array? Explain with Example.(all the types)

Explain Various String handling operations in C with Example.

'What is user defined function? Explain with example and syntax.

Explain call by value and call by reference with example.

What is structure? How to declare a structure ? Explain with Example.

What is Union? Difference between Structure and Union.

Explain File management in details.

: Differentiate:1) Static Memory Allocation

2) Dynamic Memory Allocation
Explain various Functions used in Dynamic memory allocation.

)
=

|

Y
W

A) Computer Fundamentals

1 Draw the block diagram of computer architecture and explain each block.

Computer is

made up of mainly four components,

1) Central processing unit (CPU)
2) Input section

3) Output section

4) Storage devices

Central Processing Unit

ALU + CU
INPUT SECTION 1} A OUTPUT SECTION
(Mouse, Keyboard, etc...) ” : L g (Monitor, Printer, etc...)
PRIMARY MEMORY

(RAM, ROM, etc...)

r

r

SECONDARY MEMORY

(Hard disk, Pen drive, etc...)

1) Central Processing Unit (CPU):-

1.1)

1.2)

1.3)

Central processing unit is a main part of the computer system.
It contains electronics circuitry that processes the data based on instructions.
It also controls the flow of data in the system.
It is also known as brain of the computer.
CPU consists of,
Arithmetic Logic Unit (ALU)
¥ It performs all arithmetic calculations and takes logical decision.
¥ It can perform add, subtract, multiply, compare, count, shift and other logical activities,
v It calculates very fast.
v It takes data from memory unit and returns data to memory unit, generally primary
memory.
Control Unit (CU)
v It controls all other units in the computer system.
v' It manages all operations
¥ It reads instruction and data from memory.
Primary Memory:- -
v Itis also known as main memory.
¥ The processor or the CPU directly stores and retrieves information from it.
3

L

This memory is accessed by CPU, in random fashion

Generally currently executing programs and data are stored in primary memory
Its storage capacity is very small compared to secondary storage.

It is very fast in an operation compared to secondary storage

RAM is Random Access Memory and it is volatile in nature.

ROM is Read Only Memory and it can hold data permanently.

. A, ST SHIR Tole, . SR

PROM is Programmable Read Only Memory and it can hold data permanently. Programmer
can store information only once, Modification is not allowed.

¥ EPROM is Erasable Programmable Read Only Memory. It can hold data permanently.
Programmer can delete and write on it again and again.

2) Input Se 1=

The devices used to enter data in to computer system are called input devices.
It converts human understandable input to computer controllable data.

CPU accepts information from user through input devices.

Examples: Mouse, Keyboard, Touch screen, Joystick etc...

3) Output Section:-

The devices used to send the information to the outside world from the computer is called output
devices.

It converts data stored in 1s and Os in computer to human understandable information

Examples: Monitor, Printer, Plotter, Speakers etc...

4) Storage devices (Secondary memory):-

Secondary memory is also called Auxiliary memory or External memory.

User can store data permanently.

It can be modified easily.

It can store large data compared to primary memory. Now days, it is available in Terabytes.
Examples: Hard disk, Floppy disk, CD, DVD, Pen drive, etc...

Q- 2
= B) Flowchart & Algorithm

2 What is Algorithm? What is Flowchart? Write down the advantages and disadvantages. Compare
them.
Flowchart
Flowchart is a pictorial or graphical representation of a process. Each step in the process is represented by a
different symbol and contains a short description of the process step. The flow chart symbols are linked
";’ together with arrows showing the process flow direction. This pictorial representation can give step-by-step
solution of the given problem.,
Advantages
« Easy to draw.
= Easy to understand logic.
» Easy to identify mistakes by non computer person.
» Easy to show branching and looping.
Disadvantages
= Time consuming.
= Difficult to modify.
= Very difficult to draw flowchart for big or complex problems.

Algorithm
An Algorithm is a finite sequence of well defined steps for solving a problem in systematic manner. It is written
in the natural languages like English.

Advantages

» Easy to write.

» Human readable techniques to understand logic.

* Algorithms for big problems can be written with moderate efforts.
Disadvantages

+ Difficult to debug.

» Difficult to show branching and looping.

* Jumping (goto) makes it hard to trace some problems.

Comparison:

| Flowchart | Algorithm

| It is a pictorial representation of a process. It is step wise analysis of the work to be done. _
' Solution is shown in graphical format, | Solution is shown in non computer language like English—.éz
- Easy to understand as compared to algorithm. i It is somewhat difficult to understand. ;
' Easy to show branching and looping.” Difficult to show branching and looping.

Flowchart for big problem is impractical | Algosithm can be written for any probiem
|

3 Explain _varlous symbol used in flowchart.

-

: Start / Stop

@

Write an algorithm and Draw a flowchart
4 To find whether given number is even or odd.

Algorithm:-
Step1: Input no.
Step 2: If no mod 2=0, goto 4.
Step 3: Print given no is odd, goto 5.
Step 4 : Print given no is even.
Step5: Stop.

Flowchart:-

Yes

Y

Input / Output
| (Read / Print)

Process

Decision making

start

/ Read No /

No

Is No mod 2=07?

.

/Print no is Even /
b |

/Pn'nt no is Odd /

-~

stop

®

To enter number still user wants and at the end it should display count of total number of positive,

negative and zero entered.

Algorithm:-

Step 1:
Step 2 :
Step 3 :
Step 4 :
Step 5:
Step 6 :
Step 7 :
Step 8 :
Step 9 :
Step 10 :
Step 11 :
Step 12:

Flowchart:-

Initialize pos€0,neg€0,zero<0

Read no
If no>0, goto 6
If no<0, goto 7

Increment zero by 1, zero=zero+1.go to 8

Increment pos by 1, pos=pos+1.go to 8

Increment neg by 1, neg=neg+1.

Print "Do you want to enter more number?”

Read ans

If ans = “y”, goto 2
Print pos, neg, zero
Stop.

pos€0,neg<0,zero<0

»l

el

Read no

Y

negéneg+1 ¢ zero€zero+1

Yes

Do you want to

enter more no?

/ Print pos, neg, zero /

]

«

To print maximum number from a given 3 numbers.

Algorl_tilm.-
Step1: Read a ,b, c
Step 2 : If a>b, goto 5
Step 3 : If b>c, goto 8
Step 4 : Print ¢ is maximum goto 9
Step5: If a>c, goto 7.
Step 6 : Print ¢ is maximum, goto 9
Step 7 : Print a is maximum, goto 9 *
Step 8 : Print b is maximum

Step 9 : Stop.

Flowchart:-

(start)

A

/ Read a, b, ¢ /

Y r v A J
f Print “max =" a // Print “max =" ¢ / i Print “max =" b /_/ Print "max="c /

2 To find the facto;ial of a given number.

Algorithm

Step1:
Step 2:
Step 3 :
Step 4 :
Step 5:
Step 6:
Step 7 :

Flowchart:-

Initialize count€1 fact€1

Read no

Calculate fact€fact * count.

Increment count by 1, countécount+1,
If count<=no, goto 3.

Print fact.

Stop.

/Reai no/

count€1,fact€l

L

A
fact € fact * count

:

count € count + 1

Yes

No

/ Print fact /

stop

(35

—

]

C) C Fundamentals

Explain basic structure of 'C’ program.

Link Section
Definition Section
Global Declaration Section

main()
{
Declaration Part
Executable Part
b3
“Subprogram Section (User Defined Section)
Function1()
Function2()
« Exampe:

#define PI 3.14
| int i
float areaofcircle(float);

{
//Declaration Part
float r,area;
//Executable Part
scanf("%f",&r);
area=areaofcircle(r);
printf(“Area of Circle is :- %f",area);
b
...................... e P 5
{

printf (“Your marks are %d”, mark);

1

—_—

-1 Explain different data types available in C.
A data type is a classification of various types of data, as floating-point, integer, or string. C is rich in its data
types to allow programmer to select appropriate type of data type.

-Data TypeinC
v

Primary data type
Secondary data type
(int, float, char)

Derived data type User defined data type

(array, pointer) (structure, union, enum)

1) Primary data types
Primary data types are built in data types. They are directly supported by machine. They are also known
as fundamental data types.
a. int
int is integer which is whole number without fraction part. Its range is machine dependent
values. C has 3 classes of integer storage namely short int, int and long int. All of these data

types have signed and unsigned forms.

unsigned
. Size Range
(bits)
' shog'm 8 "0to255
it [16 ~ 0to 65535
longint | 32 0 to 4,29,49,67,295

b. char
char data type can store single character of alphabet or digit or special symbol. Each character is
assagned some lnteger value which is known as ASCII values.

: signed ! Unsigned
|'size (bits) | Range Size (bits) | Range
5 e et _— . =

[char

c. float =
float data type can store floating point number which represents a real number with decimal
point and fractional part. When the accuracy of the floating point number is insufficient, we can

2

«

use the double to define the number. The double is same as float but with longer precision. To
extend the precision further we can use long double which consumes 80 bits of memory space.

Size (bits) Precision Digits | Range
| float 32 3 3.4E-38 to 3.4E+38
| double 64 14 ' 1.7E-308 to 1.7E+308
‘long float | T i il 3.4E-4932 to 1.1E+4932 =

void
The void type has no value therefore we cannot declare it as variable as we did in case of int or
float or char. The void data type is used to indicate that function is not returning anything.

2) Secondary data types
Secondary data types are not directly supported by the machine. It is combination of primary data types

to handle real life data in more convenient way. It can be further divided in two categories,

Derived data type
Derived data type is extension of primary data type. It is built-in system and its structure cannot
be changed. Examples: Array, Pointer, etc...
i. Array: An array is a fixed-size sequenced collection of elements of the same data type.
ii. Pointer: Pointer is a special variable which contains memory address of another variable
User defined data types
User defined data type can be created by programmer using combination of primary data type
and/or derived data type. Use can design it as per special requirements
i. structure: Structure is a collection of logically related data items of different data types
grouped together and known by a single name.
ii. union: Union is like a structure, except that each element shares the comman memory.
iii. enum: Enum is a user-defined type consisting of a set of named constants called
enumerators. The enumerator names are usually identifiers that behave as constants in
the language.
Example:
enum day {Mon, Tue, Wed, Thu, Fri, Sat, Sun};
enum day weeklstday ;
weeklstday = Mon;

Explain types of constant in detail.
Constant is something whose value does not change throughout the program.

Integer consi'ant:-

«_~ Integer constant is a number without decimal point and fractional part

« There are three types of integers constant.

o

Decimal integer

Decimal integer consist of a set of digits, 0 to 9 having optional — or + sign. No other
characters are allowed like space, commas, and non-digit charcters.

Ex: 123, -321, 0, +78

Octal integer

Octal integer consists of any combination of digits from the set 0 to 7. Octal numbers are
always preceded by 0.

Ex: 037, 0, 0551

Hexadecimal integer

Hexadecimal integer consists of any combination of digits fromthesetOto9andAtoF
alphabets. It always starts with Ox or 0X. A represents 10, B represents 11... F represents 15.
Ex: OX2A, 0x95, 0xA47C.

Real constant:-
« The number containing the fractional part is called real number. Ex: 0.0083, -0.75, +247.0, -0.75.

« A real number may also be expressed in exponential notation.

« The general form is: mantissa e exponent, ex: 215.65 can be written as 2.1565e2.

« In exponential form, e2 means multiply by 10%.

Single character constant:-

« It contains single character enclosed within a pair of single quote mark.

P Ex: |53' ‘A" l;a, LR

String constant:-

« A string constant is a sequence of characters enclosed within a double inverted comma.

« The characters may be letter, number, special character, blank space, etc...
« Ex: “DIET", “1988", "?A.B,!", "5+3", etc...
« ‘A’is character but "A" is string.

Explain operators available in C
An operato
rich set of operators as below,

1. Arithmeth: Operators

= : Addition or unary plus
. Subtraction or unary minus
= Multiplication
o
% Modulo o division

2. Relahonal Dperators

Relational operat

Re\atlonal ex

Logical Operators

Logical aperators are used to test mo

Z(’.'I'O

Assignment Operators
Assignment operators a
shorthand assignment operators whic

r is a symbol that tells the compiler to p

ors are used to compare two numbers a

pressmns are used in decasmn statem

re used to assign the result of an exp

erform certain mathematical or logical operation. C has

nd taking decisions based on their relation.

ents such as if, for, whlle, etr_

re than one condition and make deci

théﬁnﬁ'dﬁg either i is zero then false)
o then trua)

sions

ression to a variable. C also supports
h simplify operation with assignment

5

These are special operators in C which are generally not found in other languages.
o+t Increments value by 1.
a++ is postfix, the expression is evaluated first and then the value is incremented.
Ex. a=10; b=a++; after this statement, a= 11, b = 10.
++a is prefix, the value is incremented first and then the expression is evaluated.
: Ex. a=10; b=++a; after this statement, a= 11, b = 11.

-- """ Decrements value by 1.

: a-- is postfix, the expression is evaluated first and then the value is decremented.
| Ex. a=10; b=a--; after this statement, a= 9, b = 10.

--a is prefix, the value is decremented first and then the expression is evaluated.

| Ex. a=10; b=--a; after this statement, a= 9, b = 9.

6. Conditional Operator
A ternary operator is known as Conditional Operator.
expl?exp2:exp3 if expl is true then execute exp2 otherwise exp3
Ex: x = (a>b)?a:b; which is same as
if(a>b)
x=a;
else
x=b;
7. Bitwise Operators
Bitwise operators are used to perform operation bit by bit. Bitwise operators may not be applied to float
or double,
& . bitwise AND
| j"tii't’wi‘?e OR

Explain conditional operator (ternary operator) with example.
« C provides special conditional operator (? :) to evaluate conditional expression in single line.

6

It is also known as ternary operator because this is the only operator in C which requires three operands
or‘e'xpressions.

Syntax: exprl? expr2 : expr3

First of all exprl is evaluated, if it is nonzero (true) then the expression expr2 is evaluated otherwise
expr3 is evaluated. Only one of expr2 and expr3 is evaluated.

Example: c = a>b? a : b; // If a is greater than b then a is assigned to c otherwise b.

Syllabus for 1 midsem exam

Explain if...else...if ladder with example and draw flowchart.

When multipath decisions are involved, we may use if..else...if ladder, which takes the following general form.
if (condition-1)
statement-1;
else if (condition-2)
statement-2;
else if (condition-N)
statement-N;
else

default—statement;
statement-x

« First condition-1 is checked and if it is true, then statement-1 will be executed and control goes to
statement-X.

« If condition-1 is false, then condition-2 is checked and if it is true then statement-2 will be executed
and control goes to statement-x.

» If condition-2 is false, then condition-3 is checked and process repeats

« This process is repeated until either it finds one of the conditions is true or all the conditions are false. If all
the conditions are false, then default-statement Will be executed.

« Else part is optional in if...else...if ladder.

Flowchart:

Test
Condition

True i

Test
Condition
2

Y

| Statement-1 | True

l Statement-2 J

Test
Condition
3

True

Test
Condition
N

A
Statement-BJ |
True

y
| Statement-N I

Default
statement

¥ v X i

3 v

i Statement-x

Example: Fin‘d the class of student based on average marks.
£ #include<stdio.h>
void main()
{
int ml,m2,m3,m4,m5;
float avg;
printf ("Enter ml,m2,m3,m4,m5:");
scanf ("$d%d%dsdid", &ml, &m2, &m3, &md, &mS) ;
avg= (ml+m2+m3+md+m5) /5;
if (avg>=T0)
printf (“Distinct”);
else if(avg>=60)
printf ("First class");
else if(avg>=50)
printf ("Second class");
else if (avg>=40)
printf ("Pass class");
else
printf("fail");
1

Explain nested if with example and draw flowchart.

When a series of decisions are involved, we may have to use more than one if...else statement in nested form
as shown below.

if (test-condition-1)
{
if(test-condition-2)
{
Statement-1;

Statement-2;

Statement-3;
}
Statement-x

« If test-condition-1 is true then test-condition-2 is evaluated. If it is true then Statement-1 will be executed,
if it is false then Statement-2 will be executed.
« If test-condition-1 is false then Statement-3 will be executed.

Entry
Flowchart:

-

False

Test
Condition 1?

Test
Condition 2?7

Statement-3

Statement-1

Statement-2

r Statement-x J

| Next statement |

Example: Find maximum number from given three numbers.
$include<stdio.h>
void main ()
{
int a,b,c;
printf ("Enter value of a, b, o:");
scanf ("$d%d3d", &a, &b, &c);

if (a>b)
{
if (a>c)
printf ("a is max");
else
printf("c is max");
}
else
{
if (b>c)
printf ("b is max"):
else

rintf("c is max");
P

e

R

«

Explain switch-case statement with example.

« The switch statement is a multi-way decision making.
« It tests whether an expression matches any one of the constant values or not.
« General form of switch-case is as below,
switch (expression)
{
case const-expr 1: statement 1;
break:;
case const-expr 2: .statement 2;
break;
case const-expr 3: statement 3;
break;
default:
statements
}
« expression in switch should be integer or character expression. Float or any other data type is not allowed.
« Each case is labeled by one or more integer-valued constant.
« If a case matches the expression value then execution starts at that case.
« Value of all case expressions must be different.
« If none of the cases are matched then default case is executed. default case is optional.
« The break statement causes an immediate exit from the switch.

Example:
switch (grade)
{

case 1:
printf ("Fall (F)\n");
break;

case 2:
printf ("Bad (D)\n");
break;

case 3:
printf ("Good (C)\n");
break;

case 4:

printf ("Very Good (B)\n");
break;
case 5:
printf("Excellent'{Al\n"}:
break;
default:
printf("You have inputted false grade\n");
break; // break isn’t necessary here

Rules for swifch statement

» The switch expression must be integral type. Float or other data types are not allowed.
- » Case labels must be constant or constant expression.

« Case labels must be unigue.

« Case labels must end with colons.

s The break statement is optional.

« The default case statement is optional.

« Nesting of switch statement is allowed.

Loop Control Structure (for, while, do...while)

Explain loops available in C with example

= Loops are used to repeat execution of a block of code.
* During looping, a set of statements are executed until some condition for termination is encountered.

Generally, looping process would include the following four steps
1) [Initialization of a counter

2) Test for a termination condition

3) Loop body statements

4) Increment the counter

C supports three types of looping
while loop
* The simplest of all looping structure is while statement.
* The general format of the while statement is:
Initialization;
while (test condition)
{
body of the loop ;
increment or decrement;
}
* Test condition is evaluated and if the condition is true then the body of the loop is executed.
« After the execution of the body, the test condition is once again evaluated and if it is true, the body
is executed once again. :
e This process is repeated till the test condition is true. When it becomes false, the control is
transferred out of the loop.
* On exit, the program continues with the statements immediately after the body of the loop.
* While loop is also known as entry control loop because first control-statement is executed and if it is true
then only body of the loop will be executed.

Example: To print first 10 positive integer numbers

void main ()

{
int i;
i=1; " \\ initialization of i
while(i <= 10) \\ condition checking

{
printf (“\t%d”,1i); \\ statement execution
i++; \\ increment of control variable

do...wh!le loop

In.Contrast to while loop, the body of the do...while loop is executed first and then the loop condition is
checked.

The body of the loop is executed at least once because do..while loop tests condition at the bottom of
the loop after executing the body.

do...while loop is also known as exit control loop because first body statements are executed and then
control-statement is executed, thus condition checking happens at exit point.

The general format of the do...while statement is:

initialization;
do
{
statement;
increment or decrement;
}

while (test-condition);

Example: To print first 10 positive integer numbers

void main{()

{

int d;
1 =g \\ initialization of i
do
{
printf (“\t%d”,1i); \\ statement execution
i++; \\ increment of control variable
} while(i <= 10); \\ condition checking

for Loop

for loop provides a more concise loop control structure.
The general form of the for loop is:
for (initialization; test condition; increment)
{

body of the loop;
}
When the control enters for loop, the variables used in for loop is initialized with the starting value such
as i=0, count=0. Initialization part will be executed exactly one time.
Then it is checked with the given test condition. If the given condition is satisfied, the control enters into
the body of the loop. If condition is not satisfied then it will exit the loop.
After the completion of the execution of the loop, the control is transferred back to the increment part of
the loop. The control variable is incremented using an assignment statement such as i++
If new value of the control variable satisfies the loop condition then the body of the loop is again
executed. This process goes on till the control variable fails to satisfy the condition.
For loop is also entry control loop because ﬁrst control-statement is executed and if it is true then only
body of the loop will be executed. 4

.

«

Example: // The following is an example that finds the sum of the first ten positive
integer numbers
void main()

{

int 4; //declare variable
int sum=0;

for(i=1; i < = 10; i++) // for loop

{

sum = sum + i ; // add the value of i and store it to sum
] .
printf (“%d4”, sum);

* We can include multiple expressions in any of the fields of for loop provided that we separate such
expressions by commas. For example: for(i = 0; j = 100; i < 10 && j>50; i++, j=j-10)

for Loop while Loop do.while Loop
for(i=1; i < = 10; i++) i=1; i=1;
{ while (i<=10) do
sum = sum + i ; { {
} sum = sum + i; sum = sum + i;
1 *+; i ++;
} } while(i<=10);

/‘/State the difference between entry control loop and exit control loop.

Entry control loop Exit control loop
Entry control loop checks condition first and then Exit control loop first executes body of the loop and
| body of the loop will be executed. checks condition at last.
Body of loop may or may not be executed at all. Body of loop will be executed at least once because
condition is checked at last.

for, while are example of entry control loop. i Do...while is example of exit control loop.

Explain break, continue, goto with example.

* Sometimes it is required to quit the loop as soon as certain condition occurs.

+ For example, consider searching a particular number in a set of 100 numbers, as soon as the search
number is found it is desirable to terminate the loop.

» A break statement is used to jump out of a loop.

* A break statement provides an early exit from for, while, do...while and switch constructs.

* A break causes the innermost enclosing loop or switch to be exited immediately.

Example : Read and sum numbers till -1 is entered
void main () L
{
int i, num=0;

<

float sum=0,average;
printf (“Input the marks, -1 to end\n”);
while (1)
{

scanf (“%d”, &i);

if (i==-1)

break;

sum+=i;
}
printf (“%d”, sum);

continue;
* The continue statement can be used to skip the rest of the body of an iterative loop.
* The continue statement tells the compiler, “SKIP THE FOLLOWING STATEMENTS AND CONTINUE WITH
THE NEXT ITERATION".
Example: Find sum of 5 positive integers. If a negative number is entered then skip it.
void main ()
{
int i=1, num, sum=0;
for (i = 0; i < 5; i++)
{
scanf (“*%d”, &anum);
if (num < 0)
continue; // starts with the beginning of the loop
sum+=num;
}
printf (“The sum of positive numbers entered = %d”, sum) ;
}
goto:
* The goto statement is a jump statement which jumps from one point to another point within a function.
* The goto statement is marked by label statement. Label statement can be used anywhere in the function
above or below the goto statement.
» Generally goto should be avoided because its usage results in less efficient code, complicated logic and
difficult to debug.

Example: Following program prints 10,9, 8.7,6,5:4,3,2,1
void main ()
{

int n=10;

loop:

printf (“%d,”,n);

n--;

if (n>0)

goto loop;

T

}
Please refer book for flowchart or diagram of break, continue, goto. Page No: 167

F) Array and String

& What is an array? Explain with Example. What are the advantages of using an array?

= An array is a fixed-size sequenced collection of elements of the same data type.
« An array is derived data type.
= The individual element of an array is referred by their index or subscript value.

= The subscript for an array always begins with 0.

Syntax : data_type array name(size];

Example : int marks(5];

= The data type specifies the type of the elements that can be stored in an array, like int, float or char.
s« The size indicates the maximum number of elements that can be stored inside the array.

« In the example, data type of an array is int and maximum elernents that can be stored in an array are 5.

Advantages:
» You can use one name to store many values with different indexes.
« An array is very useful when you are working with sequences of the same kind of data.

= An array makes program easier to read, write and debug.

Example:
#include<stdio.h>
void main ()

Types of an array:
1) Single dimensional array
2) Two dimensional array

3) Multi dimensional array

Single Dimensional Array

An array using only one subscript to represent the list of elements is called single dimensional array.

Syntax : data_type array name[size];

Example : int marks|5]:

« Anindividual array element can be used anywhere like a normal variable with a statement such as
g = marks [60];
More generally if /7 is declared to be an integer variable, then the statement g=marks[il;
will take the value contained at i'" position in an array and assigns it to g.

» We can store value into array element by specifying the array element on the left hand side of the equals
sign like marks[60]=95; The value 95 is stored at 60" position in an array.

« The ability to represent a collection of related data items by a single array enables us to develop concise
and efficient programs.

=« For example we can very easily sequence through the elements in the array by varying the value of the
variable thal is used as a subscript into the array.
for(i=0; i<66; i++);

sum = sum + marks[i];

Above for loop will sequence through the first 66 elements of the marks array (elements 0 to 65) and will
add the values of each marks into sum. When for loop is finished, the variable sum will then contain the
total of first 66 values of the marks.

» The declaration int values ©]; would reserve enough space for an array called values that could hold
up to 5 integers. Refer to the below given picture to conceptualize the reserved storage space.

valueg[O]

values[1]

‘ values[2] [

| values[3] |

“values[4]

Initialization of Single Dimensional array:
The general form of initialization of array is:
data type array_name[size]={list of values};

There are three ways to initialize single dimensional array,
1. int numbexr[3)={1, 5, 2};

will initialize 0" element of an array to 1, 1% element to 5 and 2" element to 2.
2. int number([5] = {1, 7): .

will initialize 0™ element of an array to 1, 1*' element to 7 and rest all elements will be initialized to 0.
3. int numberl | =(1, 5, 6};

first of all array size will be fixed to 3 then it will initialize 0" element to 1, 1% element to 5 and 2"

element to 6

Two dimensional arrays:
» Two dimensional arrays are also called table or matrix.
« Two dimensional arrays have two subscripts.

« First subscript denotes the number of rows and second subscript denotes the number of columns.

Syntax : data type array name(row size][column sizel;

Example : int marks(10][20];

e Here m is declared as a matrix having 10 rows (numbered from 0 to 9) and 20 columns (numbered 0
through 19). The first element of the matrix is m[0][0] and the last row last column is m[9][19]
« A two dimensional array marks[4][3] is shown below. The first element is given by marks[0][0] contains

35.5 & second element is marks[0][1] and contains 40.5 and so on.

marks [0][0]
385

marks [0][1]
40.5

marks [0][2]
45.5

marks [1][0]
66.5

marks [1][1]
55.5

marks [1][2]
60.5

marks [2][0]
85.5

marks [2][1]
78.5

marks [2][2]
£65.3

marks [3][0]
25,6

marks [3][1]
35.2

marks [3][2]
76:2

Initialization of two dimensional array:

1. int table[2][3) = {(1,2,3,4,5,6};
will initialize 1% row 1** column element to 1, 1% row 2" column to 2, 1* row 3" column to 3, 2™ row 3™
column to 6 and so on.

2. int tablel2][3] = ((1,2,3),14,5,6));
here, 1% group is for 1* row and 2" group is for 2" row. So 1* row 1 column element is 1, 2" row 1%
column element is 4, 2" row 3" column element is 6 so on.

3. int table[2][3] 11,25, 14)

initializes as above but missing elements will be initialized by 0.
Explain various string handling operations available in ‘C’" with example.

C has several inbuilt functions to operate on string. These functions are known as string handling functions.

For Example: char s1[]="Their”, s2[]="There”;

[Function Meaningr L - —1
strien(s1) | Returns length of the string. e

l = strlen(s1); it returns 5 ‘

l stremp(s1,s2) | Compares two strings. i |

l It returns negetive value if s1<s2, positive if s1>52 and zero if s1=s2.]

[y

_printf(“"/od", strcmpr(sl,SZ)); 7]

Output : -9

strepy(sl,s2)

Copies 2% string to 17" string.
strcpy(sl,s2) copies the string s2 in to string s1 so sl is now “There”.

s2 remains unchanged.

strca‘t(s 1,82)

Appends 2™ string at the end of 1* string.
strcat(sl,s2); a copy of string s2 is appended at the end of string s1. Now sl

becomes “TheirThere”

stl'chr(SI,c)

Returns a pointer to the first occurrence of a given character in the string si.
printf(“*%s”,strchr(s1,));

| Output :ir
‘ strstr(s1,s2) Returns a pointer to the first occurrence of a given string s2in string s1.
printf(“%s”,strstr(s1,”he"));
Output : heir
strrev(sl) Reverses given string. .
strrev(sl); makes string s1 to “riehT”
striwr(s1) Converts string s1 to lower case.
| printf("%s", striwr(s1)); Qutput : their
| strupr(sl) Converts string sl to upper case.
printf(“%s", strupr(s1)); Output : THEIR

strncpy(sl,s2,n)

Copies first n character of string s2 to string s1
s1=""; §2="There”;

strncpy(sl,s2,2);

printf(“%s”,s1);

Output : Th

strncat(sl,sz,r{)

Appends first n character of string s2 at the end of;tring sl.
strncat(s1,s2,2);
printf(“%s"”, s1);
Output : TheirTh

strncmp(sl,s2,n)

Compares first n character of string s1 and s2 and returns similar result as
stremp() function.

printf(“%d”", strcmp(s1,s2,3));

Output : 0

: strrchr(si,c)

Returns the last occurrence of a given character in a string s1.
printf(“*%s”,strrchr(s2,’e"));
Output : ere

G) Functions

What is user defined function? Explain with example. Define the syntax of function in C.

» A function is a block of code that performs a specific task.

« The functions which are created by programmer are called user-defined functions.

« The functions which are in-built in compiler are known as system functions.

« The functions which are implemented in header libraries are known as library functions.

» It has a unique name and it is reusable i.e. it can be called from any part of a program.

+ Parameter or argument passing to function is optional.

« It is optional to return a value to the calling program. Function which is not returning any value from

function, their return type is void.

While using function, three things are important

1. Function Declaration

Like variables, all the functions must be declared before they are used.
The function declaration is also known as function prototype or function signature. It consists of
four parts,

1) Function type (return type).

2) Function name.

3) Parameter list.

4) Terminating semicolon
Syntax: <return type> FunctionName (Argumentl, Argumentl, Argument3...);
Example: int sum(int , int);
In this example, function return type is int, name of function is sum, 2 parameters are passed to

function and both are integer.

2. Function Definition

.

Function Definition is also called function implementation.
It has mainly two parts.
« Function header : It is same as function declaration but with argument name.

» Function body : Itis actual logic or coding of the function

3. Function call

.

Function is invoked from main function or other function that issknown as function call.
Function can be called by simply using a function name followed by a list of actual argument

enclosed in parentheses.

Syntax or general structure of a Function
<return type> FunctionMame (Argumentl, Argument?, Argument3
{
Statementl;
Statement2;
Statement3;
)
An example of function

#include<stdio.h>

int sum(int, int); \\ Function Declaration or Signature

void main ()
{
int a, b, ans;
scanf (“%d3d”, &a, &b);
ans = sum(a, b); \\ Function Calling
printf (“*Answer = %d”, ans);
)
int sum (int x, int y) \\ Function Definition
{
int result;
result = x + y;

return (result);

) A
NTHATRR
Syllabus for T** midsem exam

Explain call by value (pass by value) and call by reference (pass by reference) with example.

The parameters can be passed in two ways during function calling,

Call by value

Call by reference

Call by value

1

veid swap(int, int);

{

In call by value, the values of actual parameters are copied to their corresponding formal parameters.
So the original values of the variables of calling function remain unchanged.
Even if a function tries to change the value of passed parameter, those changes will occur in formal
parameter, not in actual parameter.
sample:
nclude<stdio.h>

void main ()

int x, y;

printf ("Enter the value of X & Y:");

scanf ("%d%d", &x; &y);

swap (%, yJ/

printf (“\n Values inside the main function”);
printf (“\n x=%d, y=%d", x, y)i

getch () ;

void swap(int x,int y)

]

int temp;

temp=x;

printf(™\n Values inside the swap function”);

printf ("\n x=%d y=%d", x, y);

Output:
Enter the value of X & Y: 3 5

Values inside the swap function

X=5y=3

S

Values inside the main function
X=3 y=5

Call by Reference

» In cali by reference, the address of the actual parameters is passed as an argument to the called

function.

« So the original content of the calling function can be changed.

« Call by reference is used whenever we want to change the value of local variables through function.

Example:
#include<stdio.h>
void swap(int *, int *);
void main ()
(

int ®x,¥y;

printf ("Enter the value of X & Y:

scanf ("$d%d"”, &x, &y):

swap (&x, &y);

printf (*\n Value inside the main function”);

printf ("\n x=%d y=%d", x, y).
}
void swap(int *x, int *y)
{

int temp;

temp=*x;

*y—tky;

*y=temp;

printf (*\n Value inside the swap

printf ("\n x=%d y=%d", x, y):

Output:

Enter the value of X & Y: 35
Value inside the swap function
X=5y=3

Value inside the main function
X=5y=3

function”);

What is structure? How to declare a Structure? Explain with Example
s Structure is a collection of logically related data items of different data types grouped together
under a single name.
» Structure is a user defined data type.
s Structure helps to organize complex data in a more meaningful way.
Syntax of Structure:
struct structure_name
{
data_type memberl;
data_type member2;

i
« struct is a keyword.
. structure_name is a tag name of a structure.
. memberl, member2 are members of structure.
Example:
#include<stdio.h>
#include<conio.h>

struct book

{
char title{100];
char author[50];
int pages;
float price;
+i
void main()
{ y

struct book book1;

printf("enter title, author name, pages and price of book");
scanf("%s”,book1.title};

scanf(“%s"”, bookl.author);

scanf("%d",&book1.pages);

scanf("%f",&book1.price); -
printf("\n detail of the book");

printf(“%s”,book1.title);

printf(“%s”,book1.author);

printf("%d",book1.pages);
printf("%f",book1.price);
getch();
b
« book is structure whose members are title, author, pages and price.

« bookl is a structure variable.

What is Union?

» Union is user defined data type just like structure.

» Each member in structure is assigned its own unique storage area where as in Union, all the
members share common storage area.

¢« All members share the common area so only one member can be active at a time.

s Unions are used when all the members are not assigned value at the same time.

Example:
union book
{
char title[100];
char author[50];
int pages;
float price;
b
Structure Union
Each member is assigned its own unigue All members share the same storage area.
storage area.
Total memory required by all members is Maximum memory required by the member is
allocated. allocated.

All members are active at a time. Only one member is active a time.

All members can be initialized. Only the first member can be initialized.

Requires more memory. Requires less memory.
Example: Example:
struct SS union UU
{ {
int a; - int a;
float b; float b;
char c; char c;
I %

2 bytes for a

|1 byte for c : 4 bytes for ¢,b,a ‘ n

r4 bytes for b - ‘

4 bytes are there between a,b and c because
largest memory occupies by float which is 4 bytes.

Total bytes = 1 + 2 + 4 = 7 bytes.

("7;) Eﬁ‘ P Qu ,'u; - +_ aL le. V] d Mﬂlﬂ{{ LA E‘-Uv(‘
9
=

File Management

s Inreallife, we want to store data permanently so that later on we can retrieve it and reuse it.

» Afileis a collection of bytes stored on a secondary storage device like hard disk, pen drive, and tape.
= There are two kinds of files that programmers deal with text files and binary files.

» Text file are human readable and it is a stream of plain English characters.

= Binary files are not human readable. It is a stream of processed characters and Ascii symbols.

File Opening Modes
« We want to open file for some purpose like, read file, create new file, append file, read and write file,
etc...
¢ When we open any file for processing, at that time we have to give file opening mode.
s We can do limited operations only based on mode in which file is opened.

e.g. fp = fopen (“demo.txt”,”r”); //Here file is opened in read only mode.

C has 6 different file opening modes for text files,

1. © open for reading only.

2. w open for writing (If file exists then it is overwritten)

3. a open for appending (If file does not exist then it creates new file)
4. r+ open for reading and writing, start at beginning

S, wt open for reading and writing (overwrite file)

6. at open for reading and writing, at the end {append if file exists)

Same modes are also supported for binary files by just addingb, e.g. rb, wb, ab, r+b, wt+b, a+tb

Write a C program to display file on screen.

#include <stdio.h>
void main ()
{
FILE *fp:; // Lo is file pointer. E'1LE is a structure defined in stdio.h
chax ch- ;
fp = fopen (“prog.c”, “r”); //OpenFrog.cfileinread only mode.
c = getc(fp) ;
while (ch != EOF) // EOF = End of File. Read file till end
{
putchar (ch);

ch = getc (fp);
//Reads single character from file and advances position to next character

}

fclose (fp); // Close the file so that others can access it.

Write a C program to copy a file.
finclude <stdio.h>

vold main ()

{

4 ¥ ’
13 Y (,"‘I,
P fopen (“Prog.c”,"t");
g = fopen (“Prognew.c”,"w");

= getc(p);
(ch != EOF)

while

pute (ehy q) i
ch = getc(p):;
}
printf("File is copied successfully. "):
fclose (p) ;
fclose (g) ;

return 03

Explain file handing functions with example.
C provides a set of functions to do operations on file. These functions are known as file handling functions.

Each function is used for some particular purpose.

fopen() (Open file)

« fopenis used to open a file for operation.

¢ Two arguments should be supplied to fopen function,

+ File name or full path of file to be opened

« File opening mode which indicates which type of operations are permitted on file.

» [ffile is opened successfully, it returns pointer to file else NULL.
Example: fp = fopen (“Prog.c”,”x”); //Filenameis proa.c anditis opened for reading only.

fclose() (Close file)

» QOpened files must be closed when operations are over.
* The function fclose is used to close the file i.e. indicate that we are finished processing this file.
e Toclose a file, we have to supply file pointer to fclose function.

» [ffile is closed successfully then it returns 0 else EOF.

Example: fclose (fp)
fprintf() (Write formatted output to file)

= The fprintf function prints information in the file according to the specified format.

fprintf() works just like printf(), only difference is we have to pass file pointer to the function,

It returns the number of characters outputted, or a negative number if an error occurs.

H
'
[
f
h
1
X
bl
f
L
1
§

Fovmimmm e

fscanf() (Read formatted data from file)

» The function fscanf() reads data from the given file.

e It works in a manner exactly like scanf(), only difference is we have to pass file pointer to the function.

» If reading is succeeded then it returns the number of variables that are actually assigned values, or EOF if any
error occurred.

Example: fscanf (fp, “%d”, &sum);
fseek() (Reposition file position indicator)

= Sets the position indicator associated with the file pointer to a new position defined by adding offset to a
reference position specified by origin,

» You can use fseek() to move beyond a file, but not before the beginning.

« fseek() clears the EOF flag associated with that file.

= We have to supply three arguments, file pointer, how many characters, from which location.

s |t returns zero upon success, hon-zero on failure.

The oz iain value should have one of the following values
Name Explanation

; Seek from the start of the file

Seek from the current location

Seek from the end of the file

Example: fseek (fp, 9, SEEK SET) ; // Moves file position indicator to 9" position from begging.
ftell() (Get current position in file)

It returns the current value of the position indicator of the file.
For binary streams, the value returned corresponds to the number of bytes from the beginning of the file.
Example: position = ftell (fp);

rewind() (Set position indicator to the beginning)

» Sets the position indicator associated with file to the beginning of the file.
e Acall to rewind is equivalent to: fseek (fp, 0, SEEK SET);

e On file open for update (read+write), a call to rewind allows to switch between reading and writing.

Example: rewind (£fp);
getc() (Get character from file)

e getc function returns the next character from file or EOF if the end of file is reached.
» Afterreading a character, it advances position in file by one character.

s getcis equivalent to getchar().

« fgetcisidentical to getc.

Example: ch =

c(fp);

pute() (Write character to file)

« putc writes a character 1o the file and advances the position indicator.
« After reading a character, it advances position in file by one character.

et

——

N2 KHA

putc is equivalent to putchar().
fgetc is identical to putc.

Example: pute'(ech, E£p);

getw() (Get integer from file)

getw function returns the next int from the file. If error occurs then EOF is returned.

Example: i = getw(fp):

putw() (Write integer to file)

putw function writes integer to file and advances indicator to next position,
It succeeded then returns same integer otherwise EOF is returned.

Example: putw(l, fp);

L--:;;,j,,;:() 1 C_

i)

M G'_LL‘-,,@_J{Y ’A"f |0 cet

Reggi

./:; R ?% -f%\ffh‘i’»\«) rale | 2) D S nemi e M et f Al 0 codd Y

{f;”
-

Static Memory Allocation

¢ If memory is allocated to variables before
execution of program starts then it is called
static memory allocation.

+ [tis fast and saves running time.

= |t allocates memory from stack.

e It is preferred when size of an array is known
in advance or variables are required during
most of the time of execution of program.

» Allocated memory stays from start to end of
program.

s The storage space is given symbolic name
known as variable and using this variable we
can access value.

e eg.

inti;

float j;

Dynamic Memory Allocation

If memory is allocated at runtime (during
execution of program) then it is called dynamic
memory.

It is bit slow.

It allocates memory from heap

it is preferred when number of variables is not

known in advance or very large in size.

Memory can pe allocated at any time and can
be released at any time.
The storage space allocated dynamically has
no name and therefore its value can be
accessed only through a pointer.
eg.

p = malloc(sizeof(int));

Explain various functions used in Dynamic Memory Allocation.

malloc()

Ll

.

malloc() is used to allocate a certain amount bytes of memory during the execution of a program.
malloc() allocates size in bytes bytes of memory from heap, if the allocation succeeds, a pointer to
the block of memory is returned else NULL is returned.

malloc() returns an uninitialized memory for you to use.

Malloc() can be used to allocate space for complex data types such as structures.

e Syntax: ptr var = {cast_type *)malloc(size in bytes);
* Example:
#include<stdio.h>
int main ()
{
nt *p ;
p = (int *)malloc(sizeof (int));
*p =25;
printf (“¥ad“. p)
free(P);
} .
calloc()

calloc() is used to allocate a block of memory during the execution of a program, e.g. for an array.
calloc() allocates a region of memory large enough to hold no_of blocks ofsize size of block
each, if the allocation succeeds then a pointer to the block of memory is returned else NULL is returned.

* Syntax: ptr_var=(cast_ type *)calloc(no_of blocks , size of block);

» Example:
finclude<stdio.h>
int main ()
{
: 4,05
in€ Fpg
printf ("Enter how many numbers:");

scanf ("%d", &n);

o (int*) calloc (n, sizeof (int));
for (i=0; i<n; i++)

scanf (“m'l",[_x) >

realloc()

o realloc() reallocates a memory block with a specific new size. If you call realloc(), the size of the memory
block pointed to by the pointer is changed to the given size in bytes. This way you are able to expand and
reduce the amount of memory you want to use.

e |t is possible that the function moves the memory block to a new location; then the function returns
address of new location. Old memory block is copied to new memory and old memory is released
automatically.

e The content will remain unchanged means it is copied to new location.

s |f the pointer is NULL then the realloc() will behave exactly like the malloc(). It will assign a new block of a
size in bytes and will return a pointer to it.

* Syntax: ptr_var="realloc (void * ptr, size_tsize);

e Example:

#include<stdio.h>

int main ()
{
int *p ;
p = (int *)malloc (sizeof (int));
*p =257
P (int *)realloc(p, 2 * sizeof (int));
PELInEE S 2l
free (P);
}

» When the memory is not needed anymore, you must release it calling the function free.
e Just pass the pointer of the allocated memory to free function and memory is released.
« Syntax: void free(void *pointer);

s Example: free (p) ;

	Untitled1.pdf
	1.pdf
	2.pdf
	3.pdf
	4.pdf
	5.pdf
	6.pdf
	7.pdf
	7 001.pdf
	8.pdf
	9.pdf
	10.pdf
	11.pdf
	12.pdf
	13.pdf
	14.pdf
	15.pdf
	16.pdf
	17.pdf
	18.pdf
	19.pdf
	20.pdf
	21.pdf
	22.pdf
	23.pdf

	Untitled.pdf

