

~"
~§~~«;_'..
~ ACE T ~".Jlj
'£ .~'11< A

*fJfAnr,..\--fI
~~

;(\ \~
F) Array and String~

What is an array? Explain with Example. What are the advantages of using an array?

An array is a fixed-size sequenced collection of elements of the same data type.

An array is derived data type.

The individual element of an array is referred by their index or subscript value.

The subscript for an array always begins with O.

Syntax: ddt~_type array_name[Q1zel;

Example int marks(S];

The data_tvpe specifies the type of the elements that can be stored in an array, like int, float or char.

The size indicates the maximum number of elements that can be stored inside the array.

In the example, data type of an array is int and maximum elements that can be stored in an array are S.

Advantages:

You can use one name to store many values with different indexes.

An array is very useful when you are working with sequences of the same kind of data.

An array makes program easier to read, write and debug.

Example:

~includ~<stdi0.h>

void mai n ()

int a[',) = {5,17,:JO,St],681, i;

[or(i·O;i<5;_++j

pr i n t f ("'kJ" , [i J);

Types of an array:

1) Single dimensional array

2) Two dimensional array

3) Multi dimensional array

Single Dimensional Array

An array using only one subscript to represent the list of elements is called single dimensional array.

Syntax data_type array_name I o:i 4~');

Example 1 n t rna 1 ks 151 ;

An individual array element can be used anywhere like a normal variable with a statement such as

9 = marks [60J;

More generally if i is declared to be an illteger variable, then the statement g=marks[i);

will take the value contained at it" position in an array and assigns it to g.

We can stol-e value into CiITay element by specifying the array element on the left hand side of the equals

sign like marks[60]=95; The value 95 is stored at 60th position in an array.

The ability to represent a collection of related data items by a single array enables us to develop concise

and efficient programs.

For example we can very easily sequence through the elements in the array by varying the value of the

variable that is used as a subscript into the array.

for(i=O; i<66; i++);

sum = sum + marks[i);

Above for loop will sequence through the first 66 elements of the marks array (elements 0 to 65) and will

add the values of each marks into sum. When for loop is finished, the variable sum will then contain the

total of fil-st 66 values of the marks.

The declaration int valu",," r 1; would reserve enough space for an array called values that could hold

up to 5 integers. Refer to the below given picture to conceptualize the reserved storage space.
--_.

values[O]

values[l]

values[2]

values[3]

values[4]

Initialization of Single Dimensional array:

The general form of initialization of array is:

data_type array_name[size] ={Iist of values};

There are three ways to initialize single dimensional array,

1.	 in t n urnbe r:(3 J-(1 , 5, 2);

will initialize Oth element of an alTay to 1, 1st element to 5 and 2nd element to 2.

2.	 int number[5] = {I, 71;

will initialize O'h element of an array to 1, 1st element to 7 and rest all elements will be initialized to O.

3.	 int nUlnIJex·! ! =(1, :', 6];

first of all array size will be fixed to 3 then it will initialize Oth element to 1, 1st element to 5 and 2""

element to 6

Two dimensional arrays:

Two dimensional arrays are also called table or matrix.

Two dimensional arrays have two subscripts.

•	 First subscript denotes the number of rows and second subscript denotes the number of columns.

Syntax: rlatd_type arcaY_l1amE·rl,-,~'_:;i7.elfc\)!umn_Slzel;

Example int milrks[10] [20];

Hel'e m is declared as a matl'ix having 10 rows (numbered from 0 to 9) and 20 columns (numbered 0

through 19). The first element of the matrix is m[O][O] and the last row last column is m[9][19]

A two dimensional an'ay rnal'ks[4][3] is shown below. The first elernent is given by marks[O][O] contains

35.5 & second element is rnarks[OJ[l] and contains 40.5 and so on.

marks [OJ [OJ marks [OJ[1] marks [0][2J

35.5 40.5 45.S

marks [1 J[O] marks [lJ[1J marks [lJ[2J

66.5 55.5 60,S

marks [2J[O) marks [2][11 marks [2J[2]

85.5 785 65.3

marks [3](OJ marks [3J[lJ marks [3][2]

25.6 35.2 76.2

Initialization of two dimensional array:

1.	 int tablpI2113] = il,2,3,1,5,G);

will initialize 1st row 1'l column element to 1, 1st row 2nd column to 2, 1st row 3'd column to 3, 2nd row 3'd

column to 6 and so on.

2.	 int table'2JI.i) = ({l,2,31,\4,5,6});

her'e, 1st group is for' 1" row and 2nd group is for 2n~ row. So l,t row 1st column element is 1, 2nd row 1st

column element is 4, 2nd row 3"u column element is 6 so on.

3.	 i Lable[2][3J '(l,2),(4}1

initializes as above but missing elements will be initializ.ed by O.

~T~l1 Explain various string handling operations available in 'C' with example.
~

C has several inbuilt functions to operate on string. These functions are known as string handling functions.

For Example: char sllJ= "Their", s2[] = ''There'';

Function Meaning .
strlen(sl) Retums length of the string.

1= strlen(sl); it returns 5

Compares two strings.

It returns negative value if sl<s2, positive if sl>s2 and zero if sl=s2.

strcmp(sl,s2)

3

printf("%d", strcmp(s1,s2);

Output: -9

Copies 2nd string to 1·t string.

strcpy(s1,s2) copies the str"ing s2 in to string s1 so sl is now "There".

52 remains unchanged.

Appends 2no slring at the end of 1St string.

strcat(s1,s2); a copy of string s2 is appended at the end of string s1. Now 51

becomes "TheirThere"

Returns a pointer to the first occurrence of a given character In the string sf.

printf("%s",strchr(s1, 'i'));

Output: ir

Returns a pointer to the first occurrence of a given string s2 in string s1.

printf("%s",strstr(s 1, "he"));

Output: heir

Reverses given string.

strrev(s1); mukes string s1 to "riehT"

strcpy(s1,s2)

strcat(sl,s2)

strchr(s1,c)

strstr(s1,s2)

strrev(s1)

strlwr(s1) Converts string s1 to lower case.

printf("%s", strlwr(sl)); Output: their

strupr(sl) Converts string 51 to upper case.

printf("%s", strupr(s1»); Output: THEIR

Copies first n character of string s2 to string sl

s1 = ""; s2="There";

strncpy(sl ,s2, 2);

printf("%s",s 1);

Output: Th

Appends first n character' of string s2 at the end of string s1.

strncat(s 1,s2,2);

printf("%s", sl);

Output: TheirTh

Compares first n character of string 51 and s2 and returns similar result as

stl"cmp() function.

printf("%d", strcmp(sl,s2,3»);

Output: 0

strncpy(s1,s2,n)

stl'llcat(s1 ,s2, n)

strncmp(sl,s2,n)

strr'ch r(s1,c) Returns the last occurrence of a given character in a string s1.

printf("%s",strrchr(s2, 'e'»);

Output: ere

.:1

¢
~

G) Functions

What is user defined function? Explain with example. Define the syntax of function in C.

A function is a block of code that performs a specific task.

The functions which are created by programmer are called user-defined functions.

The functions which are in-built in compiler are known as system functions.

The functions which are implemented in header libraries are known as library functions.

It has a unique name and it is reusable i.e. it can be called from any part of a program.

Parameter or argument passing to function is optional.

It is optional to return a value to the calling program. Function which is not returning any value from

function, their return type is vol <J.

While using function, three things are important

1.	 Function Declaration

[.ike variables, all the functions must be declared before they al'e used,

The fUllction declaration is also known as function prototype or function signature. It consists of

four parts,

1) Function type (retul'n type).

2) Function name.

3) Parameter list.

4) Terminating semicolon

Syntax: <return type> Funer: i onName (Jl.rgument1, Argumen t2, Argument3) ;

l::x"lIIple: 1nl 5um(int , int);

In this example, function return type is Int, name of function is sum, 2 parameters are passed to

function and both are integer.

2.	 Function Definition

Function Definition is also called function implementation.

It has mainly two parts.

Function header: It is same as function declaration but with argument name.

Function body It is actual logic or coding of the function

3.	 Function call

Function is invoked from main function or other function that i9' known as function call.

Function can be called by simply using a function name followed by a list of actual argument

enclosed in parentheses.

I

Syntax or general structure of a Function

<return type> FuncllanN~me (ArgumenLl, Alyument2, ALyument3.

SL",Lementl;

SLaLement2;

SLdteru.enL3;

An example of function

linclude<stdio.h>

inL :.;um(int, int); \\ Function Declaration or Signa Lure

void main()

int at b, ans;

.'iCanf("'od",d", I.a, I.b);

.:lns = slIm(d, b); \\ Fclnction Calling

printf("Answer = ~d". ansi;

int S11;[\ (int. x, .int y) \ \ f-'tll1cLion Definition

int result.;

eSJ:tL = x f y;

H:turn (resull:) i

2

~,:~
~

Explain call by value (pass by value) and call by reference (pass by reference) with example.

The	 parameters can be passed in two ways during function calling,

Call by value

Call by reference

Call by value

In call by value, the values of actual parameters are copied to their corresponding formal parameters.

So the original values of the variables of calling function remain unchanged.

Even if a function tries to change the value of passed parameter, those changes will occur in formal

parameter, not in actual parameter.

Example:

#incluuQ<stdio.h

void swap(i"t, int);

Did	 main ()

inl x, y;

printf("Enter the value o[X & Y:");

sCdnf ("%d%d", &x, &y);

SWi1p(;'~' y);

rll1L[("\n Values insidE:: lhe main function");

printt("\n x=%d, y=~,d", x, y);

geLch () ;

veid swap(int x,int y)

int • emp;

temp=x;

X-=Vi

y=tem

pl.intf ("\n Values; liS l<le lhc swap function");

plintf("\n x=%d y='1\d" , x, y);

Output:

Enter the value of X & Y: 3 5

Values inside the swap function

X=5 y=3

6

Values inside the main function

X=3 y=5

Call by Reference

In call by reference, the address of the actual parameters is passed as an argument to the called

function.

So the original content of the calling function can be changed.

Call by reference is used whenever we want to change the value of local variables through function.

Example:

iincIUdecstGlo.h>

void swap(int * int *);

vo~d main ()

int x,y;

print£("Enter the value of X & Y:

SCnnt("'!-d'1,d", &X, &y);

~~.'ap(&x, &y);

r~ntf("\n Value inside the main function");

rinL[("\n ;-:= y '~J", x, y);

void sV.'ap (int *x, int *y)

int temp;

tempe*x;

*X-:--*Yi

*\./-=-tPJll

r.i.ntt("\n Value ln~icle the swap functi.on");

pri.l11:f ("\n x- y~.d", x, y);

Output:

Enter the value of X & Y: 3 5

Value inside the swap function

X=5 y=3

Value inside the main function

X=5 y=3

ra·\~
~ What is structure? How to declare a Structure? Explain with Example

Structure is a collection of logically related data items of different data types grouped together
under a single name.

Structure is a user defined data type.

Structure helps to organize complex data in a more meaningful way.

Syntax of Structure:

struct structure_name

{

data_type memberl;

data_type member2;

};

•	 struct is a keyword.

•	 structure_name is a tag name of a structure.

memberl, member2 are members of structure.

Example:

#include<stdio.h>

#include<conio.h>

struct book

{

char title[lOO);

char author[SO);

int pages;

float price;

};

void main()

{

struct book bookl;

printf(Henter title, author name, pages and price of book");

scanf("%s",bookl. title);

scanf("%s", book1.author);

scanf("%d" ,&bookl. pages);

scanf("%f" ,&bookl. price);

printf(H\n detail of the book");

printf("%s",bookl. title);

printf("%s", bookl.author);

1

printf("%d", bookl. pages);

printf("%f", bookl. price);

getch() ;

}

•	 book is structure whose members are title, author, pages and price.

bookl is a structure variable.

rl"\ \c£
~

What is Union?

• Union is user defined data type just like structure.

Each member in structure is assigned its own unique storage area where as in Union, all the

members share common storage area.

All members share the common area so only one member can be active at a time.

• Unions are used when all the members are not assigned value at the same time.

Example:

union book

{

char title[lOOJ;

char author[50];

int pages;

float price;

};

Structure Union

Each member is assigned its own unique All members share the same storage area.

storage area.

Total memory required by all members is Maximum memory required by the member is

allocated. allocated.

All members are active at a time. Only one member is active a time.

All members can be initialized. Only the first member can be initialized.

Requires more memory. Requires less memory.

Example: Example:

struct SS union UU

{ {

int a; int a;

float b; float b;

cha r c; char c;

} ;

1 byte for c

2 bytes for a

4 bytes for b

4 bytes for c,b,a

'----------I"I ~
Total bytes = 1 + 2 + 4 = 7 bytes.	 4 bytes are there between a,b and c because

largest memory occupies by float which is 4 bytes.

3

~ £lIe.	 fV\ ~-k~LFI.
~. E)(f fa;vo, 1 11 qJeu.AeJJ../~

\~
~

File Management

•	 In real life, we want to store data permanently so that later on we can retrieve it and reuse it.

•	 A file is a collection of bytes stored on a secondary storage device like hard disk, pen drive, and tape.

•	 There are two kinds of files that programmers deal with text files and binary files.

•	 Text file are human readable and it is d stream of plain English characters.

•	 Binary files Jre not human readable. It is a stream of processed characters and Ascii symbols.

File Opening Modes
•	 We want to open file for some purpose like, read file, Cl"eate new file, append file, read and write file,

etc..

•	 When we open any file for processing, at that time vve have to give file opening mode.

•	 We can do limited operations only based on mode in which file is opened.

e.g. fp = fopen("demo.txtU,UrU); IIHere file is opened in read only mode.

C has 6 different file opening modes for text files,

1.	 r open for reading only.

2. w open for writing (If file exists then it is overwritten)

3 a open for appending (If file does not exist then it cr~ates new file)

4.	 r+ open for reading and writing, start at beginning

5. w+ open for reading and writing (overwrite file)

6 a+ open for reading Jild writing, at the end (append if file exists)

Same modes are also supported for binary files by just adding b, e.g. rb, wb, ab, r+b, w+b, a+b

Wl"ite a Cprogram to display file on screen.
linclude <stdio.h­
void maln ()

FILE 'k fp; II fp is file pointer. rILE is a structure defined in stdio.h

hc!r eli ;

fp = fopen("prog.c u , "rU); IIOpenProg.cfileinreadonlymode.

e = gete(fp)

_"ll il e (eh ! = E)F") II Bor =End of File. Read file till end

put::har(ch) ;

ch = getc (fp);

IIReads single char'acter from file and advances position to next character

fclose (fp) ;	 II Close the file so that others can access it.

Write a Cpl'ogram to copy a file.
#includ~ <sldiu.h.

void main ()

FILE *p, *q;

char ch;

p ~ fopen("Pr:-og.c-","r");

g = fopen ("Prognew.c", "Iv");

ell = g<2'tc(p);

while(ch 1= EOF)

rutc(ch,q);

ch = getc (p) ;

lJriIlt[("FilE:: is copied successfully. ");

[close (p) ;

fclose (q) ;

leLurn 0;

Explain file handing functions with example.
C provides a set of functions to do operations on file. These functions are known as file handling functions.

Each function is used for some particular purpose.

fopenO (Open file)

• fopen is used to open a file for operation.

• Two arguments should be supplied to fopen function,

• File name or full path of file to be opened

• File opening mode which indicates which type of operations are permitted on file.

• If file is opened successfully, it returns pointer to file else NULL.

Example: p = fopen("Prog.c","r"); II File name is prog. c and it is opened for reading only.

fdoseO (Close file)

• Opened files must be closed when operations are ovel".

• The function fclose is used to close the file i.e. indicate that we are finished processing this file.

• To close a file, we have to supply file pointer to fclose function.

• If file is closed successfully then it returns 0 else EOF.

Example: .fcl<.Jse (ip) ;

fprintfD (Write formatted output to file)

• The fprintf function prints information in the file according to the specified format.

• fprintf() works Just like printf(), only difference is we have to pass file pointer to the function.

• It returns the number of characters outputted, or a negative number if an error occurs.

r,,_,_ I_. r_._~ __ ~/~._ Ilr ~~II

fscanfO (Read formatted data from file)

•	 The function fscanfO reads data from the given file.

•	 It works in a manner exactly like scanfO, only difference is we have to pass file pointer to the function.

•	 If reading IS succeeded then it returns the number of variables that are actually assigned values, or EOF if any

error occurred,

Example: "scanf (fp, "\5d", &sum);

fseekO (Reposition file position indicator)

•	 Sets the position indicator associated with the file pointer to a new position defined by adding offset to a

reference position specified by origin,

•	 You can use fseekO to move beyond a file, but not before the beginning.

•	 fseek() c1eClrs the EOF flag associated with that file,

•	 We have to supply three arguments, file pointer, how many characters, from which location.

•	 It returns zero upon success, non-zero on failure,

The 0: igin value should have one of the following values

Name Explanation

,.EEl\ ~;ET Seek from the start of the file

SEEK CUR Seek from the current location

EEK END Seek from the end of the file

Example: f see k (fp, 9 , SEEK_SET); / / Moves file position indicator to 9th position from begging,

ftellO (Get current position in file)

It returns the current value of the position indicator of the file,

For binary streams, the value returned corresponds to the number of bytes from the beginning of the file.

Example: position = ftell (Ip);

rewindO (Set position indicator Lo the beginning)

•	 Sets the position indicator associated with file to the beginning of the file.

•	 A call to rewind is equivalent to: f seek (fp, 0, SEE1_SET) ;

•	 On file open for update (read+write), a call to rewind allows to switch between reading and writing.

Example: re~lind (fp);

getcO (Get character from file)

•	 getc function returns the next character from file or EOF if the end of file is reached,

•	 After reading a character, it advances position in file by one character.

•	 getc is equivalent to getchar().

•	 fgetc is identical to getc.

Example: ch = getc(fp);

puteO (Write chal'aete.' to file)

•	 putc writes a character to the file and advances the position indicator,

•	 After reading a character, it advances position in file by one character.

• putc is equivalent to putcharO.

• fgetc is identical to putc.

Example: pute (eh, fp);

getwO (Get integer from file)

• getw function returns the next int from the file If error occurs then EOF is returned.

Example: i = ael\v (fp) ;

putwO (Write integer to file)

• putw function writes integer to file and advances indicator to next po" ition,

• It succeeded then returns same integer otherwise EOF is returned.

Example: putvl(l, fp);

1) 5"-J-eJ-tc- M€A.vt.~1

u .'D ~tlen~fqk 2) --:Dj III Cl\.M. rL M~t rl-lIouJ;(9.Lf.

~

Static Memory Allocation Dynamic Memory Allocation

•	 If memory is allocated to variables before I • If memory is allocated at runtime (during

execution of program starts then it is called execution of program) then it is called dynamic

static memory allocation. memory.

•	 It is fast and saves running time. I • It is bit slow.

•	 It allocates memory from stack. I • It allocates memory from heap

•	 It is preferred when size of an array is known I • It is preferred when number of variables is not

in advance or variables are required during known in advance or very large in size.

most of the time of execution of program.

•	 Allocated memory stays from start to end of I • Memory can be allocated at any time and can

program. be released at any time.

•	 The storage space is given symbolic name· • The storage space allocated dynamically has

known as variable and using this variable we no name and thel'efore its value can be

can access value. accessed only through a pointer.

• e.g.

int i;

•	 e.g.

p =malloc(sizeof(int));

float j;

Explain various functions used in Dynamic Memory Allocation.

malloc()

•	 mallocO is used to allocate a certain amount bytes of memory during the execution of a program.

•	 mallocO allocates si ze_in_bytes bytes of memory from heap, if tile allocation succeeds, a pOinter to

the block of memory is returned else NULL is returned.

•	 maliocO returns an un initialized memory for you to use.

•	 MallocO can be used to allocate space for complex data types such as structures.

•	 Syntax: ptJ-_var = (casL_L}'pe *)malloc(size_ln_bytesl;

•	 Example:

II include<sl:di

lnt main ()

i nt 'p

p = (iilt *)m<:111oc(sizeof(int));

"p	 =25;
printf ('''l.d'', *p) ;

free(P);

calloc()

•	 callocO is used to allocate a block of memory during the execution of a program, e.g. for an array.

•	 caliocO allocates a region of memory large enough to hold no_of_blocks of size size_of_block

each, if the allocation succeeds then a pointer to the block of memory is returned else NULL is returned.

•	 Syntax: ptr_var~ (Cast_Lype *) calloc (no_ot_blocks , size of block);

•	 Example:

~include<stdio.lJ>

int main ()

inc i,n;

int 'p;

printf ("Ente.L how many !lumbers:");

scant ("%d",&n);

n ~ (int~) calloc (n, sizeo[(inL));

t\lt" (i=O; i<.n; itt)

seanE ("~,c1", p) ;

p++;

realloc()

•	 realloc() reallocates a memory block with a specific new size. If you call realloc(), the size of the memory

block pointed to by the pointer is changed to the given size in bytes. This way you are able to expand and

reduce the amount of memory you want to use.

•	 It is possible that the function moves the memory block to a new location; then the function returns

address of new location. Old memory block is copied to new memory and old memory is released

automatically.

•	 The content will remain unchanged means it is copied to new location.

•	 If the pointer is NULL then the realloc() will behave exactly like the malloc(). It will assign a new block of a

size in bytes and will return a pointer to it.

•	 Syntax: ptr_ va.l.-=" realloc (voiJ • ptr, size..t size);

•	 Example:

lin~lud~~stdiu.h

int main()

int "'p ;

(int A) malloe (sizeof (int)) ;
xp =25;

P ~ (int *)realloc(p, 2 * sizeof(int));

plintf ("'i,d", 'p) ;

free ([);

free()

•	 When the memory is not needed anymore, you must release it calling the f~nction free.

•	 Just pass the pointer of the allocated memory to free function and memory is released.

•	 Syntax: void free (voi.d *poi.nter);

•	 Example: free (p) ;

	Untitled1.pdf
	1.pdf
	2.pdf
	3.pdf
	4.pdf
	5.pdf
	6.pdf
	7.pdf
	7 001.pdf
	8.pdf
	9.pdf
	10.pdf
	11.pdf
	12.pdf
	13.pdf
	14.pdf
	15.pdf
	16.pdf
	17.pdf
	18.pdf
	19.pdf
	20.pdf
	21.pdf
	22.pdf
	23.pdf

	Untitled.pdf

